52 research outputs found

    A latent rhythm complexity model for attribute-controlled drum pattern generation

    Get PDF
    AbstractMost music listeners have an intuitive understanding of the notion of rhythm complexity. Musicologists and scientists, however, have long sought objective ways to measure and model such a distinctively perceptual attribute of music. Whereas previous research has mainly focused on monophonic patterns, this article presents a novel perceptually-informed rhythm complexity measure specifically designed for polyphonic rhythms, i.e., patterns in which multiple simultaneous voices cooperate toward creating a coherent musical phrase. We focus on drum rhythms relating to the Western musical tradition and validate the proposed measure through a perceptual test where users were asked to rate the complexity of real-life drumming performances. Hence, we propose a latent vector model for rhythm complexity based on a recurrent variational autoencoder tasked with learning the complexity of input samples and embedding it along one latent dimension. Aided by an auxiliary adversarial loss term promoting disentanglement, this effectively regularizes the latent space, thus enabling explicit control over the complexity of newly generated patterns. Trained on a large corpus of MIDI files of polyphonic drum recordings, the proposed method proved capable of generating coherent and realistic samples at the desired complexity value. In our experiments, output and target complexities show a high correlation, and the latent space appears interpretable and continuously navigable. On the one hand, this model can readily contribute to a wide range of creative applications, including, for instance, assisted music composition and automatic music generation. On the other hand, it brings us one step closer toward achieving the ambitious goal of equipping machines with a human-like understanding of perceptual features of music

    Virtual Reality and Choreographic Practice:The Potential for New Creative Methods

    Get PDF
    Virtual reality (VR) is becoming an increasingly intriguing space for dancers and choreographers. Choreographers may find new possibility emerging in using virtual reality to create movement and the WhoLoDancE: Whole-Body Interaction Learning for Dance Education project is developing tools to assist in this process. The interdisciplinary team which includes dancers, choreographers, educators, artists, coders, technologists and system architects have collaborated in engaging, discussing, analysing, testing and working with end-users to help with thinking about the issues that emerge in the creation of these tools. The paper sets out to explore the creative potential of VR in the context of WhoLoDancE and how this may offer new insights for the choreographer and dancer. We pay attention to the virtual environment, the virtual performance and the virtual dancer as some of the key components for equipping the choreographer to use in the creating process and to inform the dancing body. The cyclical process of live body to virtual, back to the dancing body as a choreographic device is an innovative way to approach practice. This approach may lead to new insights and innovations in choreographic methods that may extend beyond the project and ultimately take dance performance in a new direction

    HandMonizer: a case study for personalized digital musical instrument design

    Get PDF
    The rapid evolution in technology has found its way to introducing novelty in today’s live music performances. In this context, the development of Digital Musical Instruments (DMIs) has obtained increasing attention in recent years. In this paper, we present the development of a DMI called Handmonizer, an interactive artist-oriented harmonizer for musical performance adapted to the needs of a specific singer. A key component of our work is the combination of hand motion recognition and audio signal processing to obtain a smoother interaction. We describe the development methodology, but we also focus on our collaboration with the artist to conceptualize and then refine this tool until the development of the final product. At the end of this paper, we define an evaluation strategy, collecting feedback with a questionnaire addressed to the singer. Our aim in presenting this evaluation strategy is to help other engineers keen to develop cutting-edge technologies by working in partnership with artists. While results are not definitive, we believe that the chosen methodology could be of interest to other DMI researchers. Moreover, the modular nature of the Handmonizer makes it easily adaptable to further developments concerning the Internet of Sounds (IoS) and Networked Music Performances (NMP)

    Investigating Networked Music Performances in Pedagogical Scenarios for the InterMUSIC Project

    Get PDF
    With the big improvement of digital communication networks, Networked Music Performances (NMP) received a great interest from music live performance and music recording industry. The positive impact of NMP in pedagogical appli- cations, instead, has been only preliminary explored. Within the InterMUSIC project, we aim to investigate NMP from a pedagogical perspective, that has considerable differences with respect to music performances, and to develop tools to improve distance learning experiences. In this paper, we introduce a conceptual framework designed to be the foundation for all the experiments conducted in the project. We also present two preliminary experiments that investigate the sense of presence of geographically-distant musicians in a distance learning scenario. We discuss the comments provided by the musicians as a set of requirements and guidelines for future experiments

    Biosynthesis and physico-chemical characterization of high performing peptide hydrogels@graphene oxide composites

    Get PDF
    : Hydrogels based on short peptide molecules are interesting biomaterials with wide present and prospective use in biotechnologies. A well-known possible drawback of these materials can be their limited mechanical performance. In order to overcome this problem, we prepared Fmoc-Phe3self-assembling peptides by a biocatalytic approach, and we reinforced the hydrogel with graphene oxide nanosheets. The formulation here proposed confers to the hydrogel additional physicochemical properties without hampering peptide self-assembly. We investigated in depth the effect of nanocarbon morphology on hydrogel properties (i.e. morphology, viscoelastic properties, stiffness, resistance to an applied stress). In view of further developments towards possible clinical applications, we have preliminarily tested the biocompatibility of the composites. Our results showed that the innovative hydrogel composite formulation based on FmocPhe3 and GO is a biomaterial with improved mechanical properties that appears suitable for the development of biotechnological applications

    TP53 drives abscopal effect by secretion of senescence-associated molecular signals in non small cell lung cancer

    Get PDF
    Background Recent developments in abscopal effect strongly support the use of radiotherapy for the treatment of metastatic disease. However, deeper understanding of the molecular mechanisms underlying the abscopal effect are required to best benefit a larger proportion of patients with metastasis. Several groups including ours, reported the involvement of wild-type (wt) p53 in radiation-induced abscopal effects, however very little is known on the role of wtp53 dependent molecular mechanisms. Methods We investigated through in vivo and in vitro approaches how wtp53 orchestrates radiation-induced abscopal effects. Wtp53 bearing (A549) and p53-null (H1299) NSCLC lines were xenotransplanted in nude mice, and cultured in 2D monolayers and 3D tumor spheroids. Extracellular vesicles (EVs) were isolated from medium cell culture by ultracentrifugation protocol followed by Nanoparticle Tracking Analysis. Gene expression was evaluated by RT-Real Time, digital qRT-PCR, and dot blot technique. Protein levels were determined by immunohistochemistry, confocal anlysis, western blot techniques, and immunoassay. Results We demonstrated that single high-dose irradiation (20 Gy) induces significant tumor growth inhibition in contralateral non-irradiated (NIR) A549 xenograft tumors but not in NIR p53-null H1299 or p53-silenced A549 (A549sh/p53) xenografts. We further demonstrates that irradiation of A549 cells in vitro induces a senescence-associated secretory phenotype (SASP) producing extracellular vesicles (EVs) expressing CD63 and carrying DNA:RNA hybrids and LINE-1 retrotransposon. IR-A549 EVs also hamper the colony-forming capability of recipient NIR A549 cells, induce senescent phenotype, nuclear expression of DNA:RNA hybrids, and M1 macrophage polarization. Conclusions In our models, we demonstrate that high radiation dose in wtp53 tumors induce the onset of SASP and secretion of CD63+ EVs loaded with DNA:RNA hybrids and LINE-1 retrotransposons that convey senescence messages out of the irradiation field triggering abscopal effect in NIR tumors

    Clustering and Labeling of Multi-dimensional Mixed Structured Data

    No full text
    Cluster Analysis consists of the aggregation of data items of a given set into subsets based on some similarity properties. Clustering techniques have been applied in many fields which typically involve a large amount of complex data. This study focuses on what we call multi-domain clustering and labeling, i.e. a set of techniques for multi-dimensional structured mixed data clustering. The work consists of studying the best mix of clustering techniques that address the problem in the multi-domain setting. Considered data types are numerical, categorical and textual. All of them can appear together within the same clustering scenario. We focus on k-means and agglomerative hierarchical clustering methods based on a new distance function we define for this specific setting. The proposed approach has been validated on some real and realistic data-sets based onto college, automobile and leisure fields. Experimental data allowed to evaluate the effectiveness of the different solutions, both for clustering and labeling

    The Violin Ontology

    No full text
    Bowed musical instruments have been the subject of scientific investigations for centuries. Yet, the physical phenomena that are behind their timbral quality are still far from being fully understood. This is one of the reasons why the art of violin making is still so strongly tied to tradition. This manuscript describes early results in a study of the relations that exist between timbral and acoustic characteristics of such instruments and their high-level descriptors. In particular, we propose a suitable ontology for a timbral characterization of violins, where every resource is connected and provided with formally defined semantics. Semantic web technologies have taught us how ontologies can become a powerful tool for gathering and managing knowledge in specific areas of interest, where resources are connected and described with formally defined semantics. This, in fact, represents a crucial step for building applications that reason over Web data. In this paper we present an ontology for knowledge representation of violins, as part of a wider ontology of bowed instruments. With this ontology we capture timbral and acoustic aspects of violins as well as violin making and properties of the materials used for their production. We collected and organized semantic descriptors used by numerous violin makers (from natural language) to describe sound proprieties of musical instruments. We also developed an initial model of the relation between semantic descriptors and low-level audio features. The ontology that we present in this study formalizes the semantics of the high-level descriptors and investigates the relation with low- level features. The terminology has been collected through a series of interviews with violin makers in the city of Cremona (Italy), world heritage site for the practice of violin makers. Through listening tests and a feature extraction we study the correlation between high-level descriptors and objective properties of sound
    • …
    corecore